Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Vaccine X ; 14: 100311, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2309990

ABSTRACT

Background: The inactivated virus vaccine, BBIBP-CorV, was principally distributed across low- and middle-income countries as primary vaccination strategy to prevent poor COVID-19 outcomes. Limited information is available regarding its effect on heterologous boosting. We aim to evaluate the immunogenicity and reactogenicity of a third booster dose of BNT162b2 following a double BBIBP-CorV regime. Methods: We conducted a cross-sectional study among healthcare providers from several healthcare facilities of the Seguro Social de Salud del Perú - ESSALUD. We included participants two-dose BBIBP-CorV vaccinated who presented a three-dose vaccination card at least 21 days passed since the vaccinees received their third dose and were willing to provide written informed consent. Antibodies were determined using LIAISON® SARS-CoV-2 TrimericS IgG (DiaSorin Inc., Stillwater, USA). Factors potentially associated with immunogenicity, and adverse events, were considered. We used a multivariable fractional polynomial modeling approach to estimate the association between anti-SARS-CoV-2 IgG antibodies' geometric mean (GM) ratios and related predictors. Results: We included 595 subjects receiving a third dose with a median (IQR) age of 46 [37], [54], from which 40% reported previous SARS-CoV-2 infection. The overall geometric mean (IQR) of anti-SARS-CoV-2 IgG antibodies was 8,410 (5,115 - 13,000) BAU/mL. Prior SARS-CoV-2 history and full/part-time in-person working modality were significantly associated with greater GM. Conversely, time from boosting to IgG measure was associated with lower GM levels. We found 81% of reactogenicity in the study population; younger age and being a nurse were associated with a lower incidence of adverse events. Conclusions: Among healthcare providers, a booster dose of BNT162b2 following a full BBIBP-CorV regime provided high humoral immune protection. Thus, SARS-CoV-2 previous exposure and working in person displayed as determinants that increase anti-SARS-CoV-2 IgG antibodies.

2.
Travel Med Infect Dis ; : 102514, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2240030

ABSTRACT

OBJECTIVE: To estimate the prevalence of post-vaccination seropositivity against SARS-CoV-2 and identify its predictors in Peruvian Social Health Insurance (EsSalud) personnel in 2021. METHODS: We conducted a cross-sectional study in a representative simple stratified sample of EsSalud workers. We evaluated IgG anti-SARS-CoV-2 antibodies response (seropositivity) by passive (previous infection) and active immunization (vaccination), and epidemiological and occupational variables obtained by direct interview and a data collection form. Descriptive and inferential statistics were used with correction of sample weights adjusted for non-response rate, and crude and adjusted odds ratio (OR) and geometric mean ratio (GMR) with their respective 95% confidence intervals (95%CI) were estimated. RESULTS: We enrolled 1077 subjects. Seropositivity was 67.4% (95%CI: 63.4-71.1). Predictors of seropositivity were age (negative relation; p < 0.001), previous infection (aOR = 11.7; 95%CI: 7.81-17.5), working in COVID-19 area (aOR = 1.47; 95%CI: 1.02-2.11) and time since the second dose. In relation to antibody levels measured by geometric means, there was an association between male sex (aGMR = 0.77; 95%CI: 0.74-0.80), age (negative relation; p < 0.001), previous infection (aGMR = 13.1; 95%CI:4.99-34.40), non-face-to-face/licensed work modality (aGMR = 0.78; 95%CI: 0.73-0.84), being a nursing technician (aGMR = 1.30; 95%CI: 1.20-1.41), working in administrative areas (aGMR = 1.17; 95%CI: 1.10-1.25), diagnostic support (aGMR = 1.07; 95%CI: 1.01-1.15), critical care (aGMR = 0.85; 95%CI: 0.79-0.93), and in a COVID-19 area (aGMR = 1.30; 95%CI: 1.24-1.36) and time since receiving the second dose (negative relation; p < 0.001). CONCLUSIONS: Seropositivity and antibody levels decrease as the time since receiving the second dose increases. Older age and no history of previous infection were associated with lower seropositivity and antibody values. These findings may be useful for sentinel antibody surveillance and the design of booster dose strategies.

3.
Int J Infect Dis ; 123: 212-220, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2069127

ABSTRACT

OBJECTIVES: To identify differences in the clinical and epidemiologic characteristics of patients during the first and second waves of the COVID-19 pandemic at the EsSalud Lambayeque health care network, Peru. METHODS: An analytical cross-sectional study of 53,912 patients enrolled during the first and second waves of COVID-19 was conducted. Cluster analysis based on clustering large applications (CLARA) was applied to clinical-epidemiologic data presented at the time of care. The two pandemic waves were compared using clinical-epidemiologic data from epidemiologic surveillance. RESULTS: Cluster analysis identified four COVID-19 groups with a characteristic pattern. Cluster 1 included the largest number of participants in both waves, and the participants were predominantly female. Cluster 2 included patients with gastrointestinal, respiratory, and systemic symptoms. Cluster 3 was the "severe" cluster, characterized by older adults and patients with dyspnea or comorbidities (cardiovascular, diabetes, obesity). Cluster 4 included asymptomatic, pregnant, and less severe patients. We found differences in all clinical-epidemiologic characteristics according to the cluster to which they belonged. CONCLUSION: Using cluster analysis, we identified characteristic patterns in each group. Respiratory, gastrointestinal, dyspnea, anosmia, and ageusia symptoms were higher in the second COVID-19 wave than the first COVID-19 wave.


Subject(s)
COVID-19 , Aged , COVID-19/epidemiology , Cluster Analysis , Cross-Sectional Studies , Dyspnea , Female , Humans , Male , Pandemics , Peru/epidemiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL